import json
import re
import warnings
from abc import ABC
from collections.abc import Iterable, Mapping
from copy import deepcopy
from datetime import datetime as datetime_
from datetime import timezone
from functools import lru_cache
from itertools import chain
from typing import (
TYPE_CHECKING,
Any,
Callable,
Dict,
Iterator,
List,
Optional,
Protocol,
Tuple,
Union,
)
from dateutil.relativedelta import relativedelta
from dateutil.tz import tzutc
from pystac import Collection, Item, ItemCollection
from requests import Request
from pystac_client._utils import Modifiable, call_modifier
from pystac_client.conformance import ConformanceClasses
from pystac_client.stac_api_io import StacApiIO
from pystac_client.warnings import DoesNotConformTo
if TYPE_CHECKING:
from pystac_client import client as _client
DATETIME_REGEX = re.compile(
r"^(?P<year>\d{4})(-(?P<month>\d{2})(-(?P<day>\d{2})"
r"(?P<remainder>([Tt])\d{2}:\d{2}:\d{2}(\.\d+)?"
r"(?P<tz_info>[Zz]|([-+])(\d{2}):(\d{2}))?)?)?)?$"
)
class GeoInterface(Protocol):
@property
def __geo_interface__(self) -> Dict[str, Any]: ...
DatetimeOrTimestamp = Optional[Union[datetime_, str]]
Datetime = str
DatetimeLike = Union[
DatetimeOrTimestamp,
Tuple[DatetimeOrTimestamp, DatetimeOrTimestamp],
List[DatetimeOrTimestamp],
Iterator[DatetimeOrTimestamp],
]
BBox = Tuple[float, ...]
BBoxLike = Union[BBox, List[float], Iterator[float], str]
Collections = Tuple[str, ...]
CollectionsLike = Union[List[str], Iterator[str], str]
IDs = Tuple[str, ...]
IDsLike = Union[IDs, str, List[str], Iterator[str]]
Intersects = Dict[str, Any]
IntersectsLike = Union[str, GeoInterface, Intersects]
Query = Dict[str, Any]
QueryLike = Union[Query, List[str]]
FilterLangLike = str
FilterLike = Union[Dict[str, Any], str]
Sortby = List[Dict[str, str]]
SortbyLike = Union[Sortby, str, List[str]]
Fields = Dict[str, List[str]]
FieldsLike = Union[Fields, str, List[str]]
# these cannot be reordered or parsing will fail!
OP_MAP = {
">=": "gte",
"<=": "lte",
"=": "eq",
"<>": "neq",
">": "gt",
"<": "lt",
}
OPS = list(OP_MAP.keys())
# from https://gist.github.com/angstwad/bf22d1822c38a92ec0a9#gistcomment-2622319
def dict_merge(
dct: Dict[Any, Any], merge_dct: Dict[Any, Any], add_keys: bool = True
) -> Dict[Any, Any]:
"""Recursive dict merge.
Inspired by :meth:``dict.update()``, instead of
updating only top-level keys, dict_merge recurses down into dicts nested
to an arbitrary depth, updating keys. The ``merge_dct`` is merged into
``dct``. This version will return a copy of the dictionary and leave the original
arguments untouched. The optional argument ``add_keys``, determines whether keys
which are present in ``merge_dict`` but not ``dct`` should be included in the new
dict.
Args:
dct (dict) onto which the merge is executed
merge_dct (dict): dct merged into dct
add_keys (bool): whether to add new keys
Return:
dict: updated dict
"""
dct = dct.copy()
if not add_keys:
merge_dct = {k: merge_dct[k] for k in set(dct).intersection(set(merge_dct))}
for k, v in merge_dct.items():
if k in dct and isinstance(dct[k], dict) and isinstance(merge_dct[k], Mapping):
dct[k] = dict_merge(dct[k], merge_dct[k], add_keys=add_keys)
else:
dct[k] = merge_dct[k]
return dct
class BaseSearch(ABC):
_stac_io: StacApiIO
def __init__(
self,
url: str,
*,
method: Optional[str] = "POST",
max_items: Optional[int] = None,
stac_io: Optional[StacApiIO] = None,
client: Optional["_client.Client"] = None,
limit: Optional[int] = None,
ids: Optional[IDsLike] = None,
collections: Optional[CollectionsLike] = None,
bbox: Optional[BBoxLike] = None,
intersects: Optional[IntersectsLike] = None,
datetime: Optional[DatetimeLike] = None,
query: Optional[QueryLike] = None,
filter: Optional[FilterLike] = None,
filter_lang: Optional[FilterLangLike] = None,
sortby: Optional[SortbyLike] = None,
fields: Optional[FieldsLike] = None,
modifier: Optional[Callable[[Modifiable], None]] = None,
q: Optional[str] = None,
):
self.url = url
self.client = client
self._max_items = max_items
if self._max_items is not None and limit is not None:
limit = min(limit, self._max_items)
if limit is not None and (limit < 1 or limit > 10000):
raise Exception(f"Invalid limit of {limit}, must be between 1 and 10,000")
self.method = method
self.modifier = modifier
params = {
"limit": limit,
"bbox": self._format_bbox(bbox),
"datetime": self._format_datetime(datetime),
"ids": self._format_ids(ids),
"collections": self._format_collections(collections),
"intersects": self._format_intersects(intersects),
"query": self._format_query(query),
"filter": self._format_filter(filter),
"filter-lang": self._format_filter_lang(filter, filter_lang),
"sortby": self._format_sortby(sortby),
"fields": self._format_fields(fields),
"q": q,
}
self._parameters: Dict[str, Any] = {
k: v for k, v in params.items() if v is not None
}
def get_parameters(self) -> Dict[str, Any]:
if self.method == "POST":
return self._parameters
elif self.method == "GET":
return self._clean_params_for_get_request()
else:
raise Exception(f"Unsupported method {self.method}")
def _clean_params_for_get_request(self) -> Dict[str, Any]:
params = deepcopy(self._parameters)
if "bbox" in params:
params["bbox"] = ",".join(map(str, params["bbox"]))
if "ids" in params:
params["ids"] = ",".join(params["ids"])
if "collections" in params:
params["collections"] = ",".join(params["collections"])
if "intersects" in params:
params["intersects"] = json.dumps(
params["intersects"], separators=(",", ":")
)
if "query" in params:
params["query"] = json.dumps(params["query"], separators=(",", ":"))
if "sortby" in params:
params["sortby"] = self._sortby_dict_to_str(params["sortby"])
if "fields" in params:
params["fields"] = self._fields_dict_to_str(params["fields"])
return params
def url_with_parameters(self) -> str:
"""Returns the search url with parameters, appropriate for a GET request.
Examples:
>>> search = ItemSearch(
... url="https://planetarycomputer.microsoft.com/api/stac/v1/search",
... collections=["cop-dem-glo-30"],
... bbox=[88.214, 27.927, 88.302, 28.034],
... )
>>> assert (
... search.url_with_parameters()
... == "https://planetarycomputer.microsoft.com/api/stac/v1/search?"
... "limit=100&bbox=88.214,27.927,88.302,28.034&collections=cop-dem-glo-30"
... )
Returns:
str: The search url with parameters.
"""
params = self._clean_params_for_get_request()
request = Request("GET", self.url, params=params)
url = request.prepare().url
if url is None:
raise ValueError("Could not construct a full url")
return url
def _format_query(self, value: Optional[QueryLike]) -> Optional[Dict[str, Any]]:
if value is None:
return None
if self.client and not self.client.conforms_to(ConformanceClasses.QUERY):
warnings.warn(DoesNotConformTo("QUERY"))
if isinstance(value, dict):
return value
elif isinstance(value, list):
query: Dict[str, Any] = {}
for q in value:
if isinstance(q, str):
try:
query = dict_merge(query, json.loads(q))
except json.decoder.JSONDecodeError:
for op in OPS:
parts = q.split(op)
if len(parts) == 2:
param = parts[0]
val: Union[str, float] = parts[1]
if param == "gsd":
val = float(val)
query = dict_merge(query, {parts[0]: {OP_MAP[op]: val}})
break
else:
raise Exception("Unsupported query format, must be a List[str].")
else:
raise Exception("Unsupported query format, must be a Dict or List[str].")
return query
@staticmethod
def _format_filter_lang(
_filter: Optional[FilterLike], value: Optional[FilterLangLike]
) -> Optional[str]:
if _filter is None:
return None
if value is not None:
return value
if isinstance(_filter, str):
return "cql2-text"
if isinstance(_filter, dict):
return "cql2-json"
return None
def _format_filter(self, value: Optional[FilterLike]) -> Optional[FilterLike]:
if value is None:
return None
if self.client and not self.client.conforms_to(ConformanceClasses.FILTER):
warnings.warn(DoesNotConformTo("FILTER"))
return value
@staticmethod
def _format_bbox(value: Optional[BBoxLike]) -> Optional[BBox]:
if value is None:
return None
if isinstance(value, str):
bbox = tuple(map(float, value.split(",")))
else:
bbox = tuple(map(float, value))
return bbox
@staticmethod
def _to_utc_isoformat(dt: datetime_) -> str:
if dt.tzinfo is not None:
dt = dt.astimezone(timezone.utc)
dt = dt.replace(tzinfo=None)
return f'{dt.isoformat("T")}Z'
def _to_isoformat_range(
self,
component: DatetimeOrTimestamp,
) -> Tuple[str, Optional[str]]:
"""Converts a single DatetimeOrTimestamp into one or two Datetimes.
This is required to expand a single value like "2017" out to the whole
year. This function returns two values. The first value is always a
valid Datetime. The second value can be None or a Datetime. If it is
None, this means that the first value was an exactly specified value
(e.g. a `datetime.datetime`). If the second value is a Datetime, then
it will be the end of the range at the resolution of the component,
e.g. if the component were "2017" the second value would be the last
second of the last day of 2017.
"""
if component is None:
return "..", None
elif isinstance(component, str):
if component == "..":
return component, None
elif component == "":
return "..", None
match = DATETIME_REGEX.match(component)
if not match:
raise Exception(f"invalid datetime component: {component}")
elif match.group("remainder"):
if match.group("tz_info"):
return component, None
else:
return f"{component}Z", None
else:
year = int(match.group("year"))
optional_month = match.group("month")
optional_day = match.group("day")
if optional_day is not None:
start = datetime_(
year,
int(optional_month),
int(optional_day),
0,
0,
0,
tzinfo=tzutc(),
)
end = start + relativedelta(days=1, seconds=-1)
elif optional_month is not None:
start = datetime_(year, int(optional_month), 1, 0, 0, 0, tzinfo=tzutc())
end = start + relativedelta(months=1, seconds=-1)
else:
start = datetime_(year, 1, 1, 0, 0, 0, tzinfo=tzutc())
end = start + relativedelta(years=1, seconds=-1)
return self._to_utc_isoformat(start), self._to_utc_isoformat(end)
else:
return self._to_utc_isoformat(component), None
def _format_datetime(self, value: Optional[DatetimeLike]) -> Optional[Datetime]:
if value is None:
return None
elif isinstance(value, datetime_):
return self._to_utc_isoformat(value)
elif isinstance(value, str):
components = value.split("/")
else:
components = list(value) # type: ignore
if not components:
return None
elif len(components) == 1:
if components[0] is None:
raise Exception("cannot create a datetime query with None")
start, end = self._to_isoformat_range(components[0])
if end is not None:
return f"{start}/{end}"
else:
return start
elif len(components) == 2:
if all(c is None for c in components):
raise Exception("cannot create a double open-ended interval")
start, _ = self._to_isoformat_range(components[0])
backup_end, end = self._to_isoformat_range(components[1])
return f"{start}/{end or backup_end}"
else:
raise Exception(
"too many datetime components "
f"(max=2, actual={len(components)}): {value}"
)
@staticmethod
def _format_collections(value: Optional[CollectionsLike]) -> Optional[Collections]:
def _format(c: Any) -> Collections:
if isinstance(c, str):
return (c,)
if isinstance(c, Iterable):
return tuple(map(lambda x: _format(x)[0], c))
return (c.id,)
if value is None:
return None
if isinstance(value, str):
return tuple(map(lambda x: _format(x)[0], value.split(",")))
if isinstance(value, Collection):
return _format(value)
return _format(value)
@staticmethod
def _format_ids(value: Optional[IDsLike]) -> Optional[IDs]:
if value is None or isinstance(value, (tuple, list)) and not value:
# We can't just check for truthiness here because of the Iterator[str] case
return None
elif isinstance(value, str):
# We could check for str in the first branch, but then we'd be checking
# for str twice #microoptimizations
if value:
return tuple(value.split(","))
else:
return None
else:
return tuple(value)
def _format_sortby(self, value: Optional[SortbyLike]) -> Optional[Sortby]:
if value is None:
return None
if self.client and not self.client.conforms_to(ConformanceClasses.SORT):
warnings.warn(DoesNotConformTo("SORT"))
if isinstance(value, str):
return [self._sortby_part_to_dict(part) for part in value.split(",")]
if isinstance(value, list):
if value and isinstance(value[0], str):
return [self._sortby_part_to_dict(str(v)) for v in value]
elif value and isinstance(value[0], dict):
return value # type: ignore
raise Exception(
"sortby must be of type None, str, List[str], or List[Dict[str, str]"
)
@staticmethod
def _sortby_part_to_dict(part: str) -> Dict[str, str]:
if part.startswith("-"):
return {"field": part[1:], "direction": "desc"}
elif part.startswith("+"):
return {"field": part[1:], "direction": "asc"}
else:
return {"field": part, "direction": "asc"}
@staticmethod
def _sortby_dict_to_str(sortby: Sortby) -> str:
return ",".join(
[
f"{'+' if sort['direction'] == 'asc' else '-'}{sort['field']}"
for sort in sortby
]
)
def _format_fields(self, value: Optional[FieldsLike]) -> Optional[Fields]:
if value is None:
return None
if self.client and not self.client.conforms_to(ConformanceClasses.FIELDS):
warnings.warn(DoesNotConformTo("FIELDS"))
if isinstance(value, str):
return self._fields_to_dict(value.split(","))
if isinstance(value, list):
return self._fields_to_dict(value)
if isinstance(value, dict):
return value
raise Exception(
"sortby must be of type None, str, List[str], or List[Dict[str, str]"
)
@staticmethod
def _fields_to_dict(fields: List[str]) -> Fields:
includes: List[str] = []
excludes: List[str] = []
for field in fields:
if field.startswith("-"):
excludes.append(field[1:])
elif field.startswith("+"):
includes.append(field[1:])
else:
includes.append(field)
return {"include": includes, "exclude": excludes}
@staticmethod
def _fields_dict_to_str(fields: Fields) -> str:
includes = [f"+{x}" for x in fields.get("include", [])]
excludes = [f"-{x}" for x in fields.get("exclude", [])]
return ",".join(chain(includes, excludes))
@staticmethod
def _format_intersects(value: Optional[IntersectsLike]) -> Optional[Intersects]:
if value is None:
return None
if isinstance(value, dict):
if value.get("type") == "Feature":
return deepcopy(value.get("geometry"))
else:
return deepcopy(value)
if isinstance(value, str):
return dict(json.loads(value))
if hasattr(value, "__geo_interface__"):
return dict(deepcopy(getattr(value, "__geo_interface__")))
raise Exception(
"intersects must be of type None, str, dict, or an object that "
"implements __geo_interface__"
)
if TYPE_CHECKING:
from pystac_client import client as _client
def __getattr__(name: str) -> Any:
if name in ("DEFAUL_LIMIT", "DEFAULT_LIMIT_AND_MAX_ITEMS"):
warnings.warn(
f"{name} is deprecated and will be removed in v0.8", DeprecationWarning
)
return 100
raise AttributeError(f"module {__name__} has no attribute {name}")
[docs]
class ItemSearch(BaseSearch):
"""Represents a deferred query to a STAC search endpoint as described in the
`STAC API - Item Search spec
<https://github.com/radiantearth/stac-api-spec/tree/master/item-search>`__.
No request is sent to the API until a method is called to iterate
through the resulting STAC Items, either :meth:`ItemSearch.item_collections`,
:meth:`ItemSearch.items`, or :meth:`ItemSearch.items_as_dicts`.
All parameters except `url``, ``method``, ``max_items``, and ``client``
correspond to query parameters
described in the `STAC API - Item Search: Query Parameters Table
<https://github.com/radiantearth/stac-api-spec/tree/master/item-search#query-parameter-table>`__
docs. Please refer
to those docs for details on how these parameters filter search results.
Args:
url: The URL to the search page of the STAC API.
method : The HTTP method to use when making a request to the service.
This must be either ``"GET"``, ``"POST"``, or
``None``. If ``None``, this will default to ``"POST"``.
If a ``"POST"`` request receives a ``405`` status for
the response, it will automatically retry with
``"GET"`` for all subsequent requests.
max_items : The maximum number of items to return from the search, even
if there are more matching results. This allows the client to limit the
total number of Items returned from the :meth:`items`,
:meth:`item_collections`, and :meth:`items_as_dicts methods`. The client
will continue to request pages of items until the number of max items is
reached. By default (``max_items=None``) all items matching the query
will be returned.
stac_io: An instance of StacIO for retrieving results. Normally comes
from the Client that returns this ItemSearch client: An instance of a
root Client used to set the root on resulting Items.
client: An instance of Client for retrieving results. This is normally populated
by the client that returns this ItemSearch instance.
limit: A recommendation to the service as to the number of items to return
*per page* of results. Defaults to 100.
ids: List of one or more Item ids to filter on.
collections: List of one or more Collection IDs or :class:`pystac.Collection`
instances.
bbox: A list, tuple, or iterator representing a bounding box of 2D
or 3D coordinates. Results will be filtered
to only those intersecting the bounding box.
intersects: A string or dictionary representing a GeoJSON geometry or feature,
or an object that implements a ``__geo_interface__`` property, as supported
by several libraries including Shapely, ArcPy, PySAL, and geojson. Results
filtered to only those intersecting the geometry.
datetime: Either a single datetime or datetime range used to filter results.
You may express a single datetime using a :class:`datetime.datetime`
instance, a `RFC 3339-compliant <https://tools.ietf.org/html/rfc3339>`__
timestamp, or a simple date string (see below). Instances of
:class:`datetime.datetime` may be either
timezone aware or unaware. Timezone aware instances will be converted to
a UTC timestamp before being passed
to the endpoint. Timezone unaware instances are assumed to represent UTC
timestamps. You may represent a
datetime range using a ``"/"`` separated string as described in the spec,
or a list, tuple, or iterator
of 2 timestamps or datetime instances. For open-ended ranges, use either
``".."`` (``'2020-01-01:00:00:00Z/..'``,
``['2020-01-01:00:00:00Z', '..']``) or a value of ``None``
(``['2020-01-01:00:00:00Z', None]``).
If using a simple date string, the datetime can be specified in
``YYYY-mm-dd`` format, optionally truncating
to ``YYYY-mm`` or just ``YYYY``. Simple date strings will be expanded to
include the entire time period, for example:
- ``2017`` expands to ``2017-01-01T00:00:00Z/2017-12-31T23:59:59Z``
- ``2017-06`` expands to ``2017-06-01T00:00:00Z/2017-06-30T23:59:59Z``
- ``2017-06-10`` expands to ``2017-06-10T00:00:00Z/2017-06-10T23:59:59Z``
If used in a range, the end of the range expands to the end of that
day/month/year, for example:
- ``2017/2018`` expands to
``2017-01-01T00:00:00Z/2018-12-31T23:59:59Z``
- ``2017-06/2017-07`` expands to
``2017-06-01T00:00:00Z/2017-07-31T23:59:59Z``
- ``2017-06-10/2017-06-11`` expands to
``2017-06-10T00:00:00Z/2017-06-11T23:59:59Z``
query: List or JSON of query parameters as per the STAC API `query` extension
filter: JSON of query parameters as per the STAC API `filter` extension
filter_lang: Language variant used in the filter body. If `filter` is a
dictionary or not provided, defaults
to 'cql2-json'. If `filter` is a string, defaults to `cql2-text`.
sortby: A single field or list of fields to sort the response by
fields: A list of fields to include in the response. Note this may
result in invalid STAC objects, as they may not have required fields.
Use `items_as_dicts` to avoid object unmarshalling errors.
modifier : A callable that modifies the children collection and items
returned by this Client. This can be useful for injecting
authentication parameters into child assets to access data
from non-public sources.
The callable should expect a single argument, which will be one
of the following types:
* :class:`pystac.Collection`
* :class:`pystac.Item`
* :class:`pystac.ItemCollection`
* A STAC item-like :class:`dict`
* A STAC collection-like :class:`dict`
The callable should mutate the argument in place and return ``None``.
``modifier`` propagates recursively to children of this Client.
After getting a child collection with, e.g.
:meth:`Client.get_collection`, the child items of that collection
will still be signed with ``modifier``.
"""
_stac_io: StacApiIO
def __init__(
self,
url: str,
*,
method: Optional[str] = "POST",
max_items: Optional[int] = None,
stac_io: Optional[StacApiIO] = None,
client: Optional["_client.Client"] = None,
limit: Optional[int] = None,
ids: Optional[IDsLike] = None,
collections: Optional[CollectionsLike] = None,
bbox: Optional[BBoxLike] = None,
intersects: Optional[IntersectsLike] = None,
datetime: Optional[DatetimeLike] = None,
query: Optional[QueryLike] = None,
filter: Optional[FilterLike] = None,
filter_lang: Optional[FilterLangLike] = None,
sortby: Optional[SortbyLike] = None,
fields: Optional[FieldsLike] = None,
modifier: Optional[Callable[[Modifiable], None]] = None,
):
super().__init__(
url=url,
method=method,
max_items=max_items,
stac_io=stac_io,
client=client,
limit=limit,
ids=ids,
collections=collections,
bbox=bbox,
intersects=intersects,
datetime=datetime,
query=query,
filter=filter,
filter_lang=filter_lang,
sortby=sortby,
fields=fields,
modifier=modifier,
)
if client and client._stac_io is not None and stac_io is None:
self._stac_io = client._stac_io
if not client.conforms_to(ConformanceClasses.ITEM_SEARCH):
warnings.warn(DoesNotConformTo("ITEM_SEARCH"))
else:
self._stac_io = stac_io or StacApiIO()
[docs]
@lru_cache(1)
def matched(self) -> Optional[int]:
"""Return number matched for search
Returns the value from the `numberMatched` or `context.matched` field.
Not all APIs will support counts in which case a warning will be issued
Returns:
int: Total count of matched items. If counts are not supported `None`
is returned.
"""
params = {**self.get_parameters(), "limit": 1}
resp = self._stac_io.read_json(self.url, method=self.method, parameters=params)
found = None
if "context" in resp:
found = resp["context"].get("matched", None)
elif "numberMatched" in resp:
found = resp["numberMatched"]
if found is None:
warnings.warn("numberMatched or context.matched not in response")
return found
# ------------------------------------------------------------------------
# Result sets
# ------------------------------------------------------------------------
# By item
[docs]
def items(self) -> Iterator[Item]:
"""Iterator that yields :class:`pystac.Item` instances for each item matching
the given search parameters.
Yields:
Item : each Item matching the search criteria
"""
for item in self.items_as_dicts():
# already signed in items_as_dicts
yield Item.from_dict(item, root=self.client, preserve_dict=False)
[docs]
def items_as_dicts(self) -> Iterator[Dict[str, Any]]:
"""Iterator that yields :class:`dict` instances for each item matching
the given search parameters.
Yields:
Item : each Item matching the search criteria
"""
for page in self.pages_as_dicts():
for item in page.get("features", []):
# already signed in pages_as_dicts
yield item
# ------------------------------------------------------------------------
# By Page
[docs]
def pages(self) -> Iterator[ItemCollection]:
"""Iterator that yields ItemCollection objects. Each ItemCollection is
a page of results from the search.
Yields:
ItemCollection : a group of Items matching the search criteria within an
ItemCollection
"""
if isinstance(self._stac_io, StacApiIO):
for page in self.pages_as_dicts():
# already signed in pages_as_dicts
yield ItemCollection.from_dict(
page, preserve_dict=False, root=self.client
)
[docs]
def pages_as_dicts(self) -> Iterator[Dict[str, Any]]:
"""Iterator that yields :class:`dict` instances for each page
of results from the search.
Yields:
Dict : a group of items matching the search
criteria as a feature-collection-like dictionary.
"""
if isinstance(self._stac_io, StacApiIO):
num_items = 0
for page in self._stac_io.get_pages(
self.url, self.method, self.get_parameters()
):
call_modifier(self.modifier, page)
features = page.get("features", [])
if features:
num_items += len(features)
if self._max_items and num_items > self._max_items:
# Slice the features down to make sure we hit max_items
page["features"] = features[0 : -(num_items - self._max_items)]
yield page
if self._max_items and num_items >= self._max_items:
return
else:
return
# ------------------------------------------------------------------------
# Everything
[docs]
@lru_cache(1)
def item_collection(self) -> ItemCollection:
"""
Get the matching items as a :py:class:`pystac.ItemCollection`.
Return:
ItemCollection: The item collection
"""
# Bypass the cache here, so that we can pass __preserve_dict__
# without mutating what's in the cache.
feature_collection = self.item_collection_as_dict.__wrapped__(self)
# already signed in item_collection_as_dict
return ItemCollection.from_dict(
feature_collection, preserve_dict=False, root=self.client
)
[docs]
@lru_cache(1)
def item_collection_as_dict(self) -> Dict[str, Any]:
"""
Get the matching items as an item-collection-like dict.
The dictionary will have two keys:
1. ``'type'`` with the value ``'FeatureCollection'``
2. ``'features'`` with the value being a list of dictionaries
for the matching items.
Return:
Dict : A GeoJSON FeatureCollection
"""
features = []
for page in self.pages_as_dicts():
for feature in page["features"]:
features.append(feature)
feature_collection = {"type": "FeatureCollection", "features": features}
return feature_collection
# Deprecated methods
# not caching these, since they're cached in the implementation
[docs]
def get_item_collections(self) -> Iterator[ItemCollection]:
"""DEPRECATED
.. deprecated:: 0.4.0
Use :meth:`ItemSearch.pages` instead.
Yields:
ItemCollection : a group of Items matching the search criteria.
"""
warnings.warn(
"get_item_collections() is deprecated, use pages() instead",
FutureWarning,
)
return self.pages()
[docs]
def item_collections(self) -> Iterator[ItemCollection]:
"""DEPRECATED
.. deprecated:: 0.5.0
Use :meth:`ItemSearch.pages` instead.
Yields:
ItemCollection : a group of Items matching the search criteria within an
ItemCollection
"""
warnings.warn(
"item_collections() is deprecated, use pages() instead",
FutureWarning,
)
return self.pages()
[docs]
def get_items(self) -> Iterator[Item]:
"""DEPRECATED.
.. deprecated:: 0.4.0
Use :meth:`ItemSearch.items` instead.
Yields:
Item : each Item matching the search criteria
"""
warnings.warn(
"get_items() is deprecated, use items() instead",
FutureWarning,
)
return self.items()
[docs]
def get_all_items(self) -> ItemCollection:
"""DEPRECATED
.. deprecated:: 0.4.0
Use :meth:`ItemSearch.item_collection` instead.
Return:
item_collection : ItemCollection
"""
warnings.warn(
"get_all_items() is deprecated, use item_collection() instead.",
FutureWarning,
)
return self.item_collection()
[docs]
def get_all_items_as_dict(self) -> Dict[str, Any]:
"""DEPRECATED
.. deprecated:: 0.4.0
Use :meth:`ItemSearch.item_collection_as_dict` instead.
Return:
Dict : A GeoJSON FeatureCollection
"""
warnings.warn(
"get_all_items_as_dict() is deprecated, use item_collection_as_dict() "
"instead.",
FutureWarning,
)
return self.item_collection_as_dict()